عنوان فارسی ترجمه مقاله یک رویکرد ترکیبی کارآمد بر اساس PSO، ACO و K-means برای تحلیل خوشه ای

مقاله درباره داده کاوی
خوشه بندی
مقاله درباره PSO
مقاله درباره ACO
مقاله درباره K-means
Ant colony optimization
Data clustering
Hybrid evolutionary optimization algorithm
k-means
<
:
:
:
:

/div>
چکیده
خوشه بندی، یک روش محبوب برای تحلیل داده ها و داده کاوی است. روش رایج برای خوشه بندی، بر اساس k-means است به طوری که داده ها به k خوشه تقسیم می شوند. با این حال، الگوریتم k-means بسیار وابسته به حالت اولیه است و به راه حل بهینه محلی همگرا می شود.
در این مقاله یک الگوریتم تکاملی ترکیبی جدید برای حل مسئله خوشه بندی تقسیمی غیر خطی ارائه می گردد. الگوریتم تکاملی ترکیبی پیشنهادی، ترکیبی از الگوریتم FAPSO(بهینه سازی ازدحام ذرات تطبیقی فازی)، ACO (بهینه سازی کلونی مورچه) و k-means، به نام FAPSO-ACO-K است، که می تواند پارتیشن خوشه ای بهتری پیدا کند.
عملکرد الگوریتم پیشنهادی، از طریق چندین مجموعه داده معیار ارزیابی می گردد. نتایج شبیه سازی نشان می دهد که عملکرد الگوریتم پیشنهادی، بهتر از الگوریتم های دیگر مانند PSO، ACO، بازپخت شبیه سازی شده (SA)، ترکیبی از PSO و SA (PSO–SA)، ترکیبی از ACO وSA (ACO–SA)، ترکیبی از PSO و ACO (PSO–ACO)، الگوریتم ژنتیک (GA)، جستجوی تابو (TS)، بهینه سازی جفت گیری زنبور عسل (HBMO) و K-means برای مسئله خوشه بندی تقسیمی است.